UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso **2013-2014**

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder razonadamente a las cuestiones de la opción elegida. Para la realización de esta prueba se puede utilizar calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos.

TIEMPO: 90 minutos.

OPCIÓN A

Ejercicio 1. (Calificación máxima: 2 puntos)

Considérese el siguiente sistema de ecuaciones dependiente del parámetro real λ :

$$\begin{cases} 2x - \lambda y + z = -\lambda \\ 4x - 2\lambda y + 2z = \lambda - 3. \end{cases}$$

- a) Determínense los valores del parámetro real λ que hacen que el sistema sea incompatible.
- b) Resuélvase el sistema para $\lambda = 1$.

Ejercicio 2. (Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por

$$f(x) = \frac{(x-3)^2}{x(x-2)}.$$

- a) Determínense las asíntotas de f.
- b) Estúdiese si la función f es creciente o decreciente en un entorno de x=4.

Ejercicio 3. (Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por $f(x) = 2e^{x+1}$.

- a) Esbócese la gráfica de la función f.
- b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función, el eje de abscisas y las rectas x=0 y x=1.

Ejercicio 4. (Calificación máxima: 2 puntos)

En la representación de navidad de los alumnos de 3º de primaria de un colegio hay tres tipos de papeles: 7 son de animales, 3 de personas y 12 de árboles. Los papeles se asignan al azar, los alumnos escogen por orden alfabético sobres cerrados en los que está escrito el papel que les ha correspondido.

- a) Calcúlese la probabilidad de que a los dos primeros alumnos les toque el mismo tipo de papel.
- b) Calcúlese la probabilidad de que el primer papel de persona le toque al tercer alumno de la lista.

Ejercicio 5. (Calificación máxima: 2 puntos)

La estatura en centímetros (cm) de los varones mayores de edad de una determinada población se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica $\sigma=16$ cm.

- a) Se tomó una muestra aleatoria simple de 625 individuos obteniéndose una media muestral $\bar{x}=169$ cm. Hállese un intervalo de confianza al $98\,\%$ para μ .
- b) ¿Cuál es el mínimo tamaño muestral necesario para que el error máximo cometido en la estimación de μ por la media muestral sea menor que 4 cm, con un nivel de confianza del $90\,\%$?

1

OPCIÓN B

Ejercicio 1. (Calificación máxima: 2 puntos)

Considérese la matriz

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- a) Calcúlese $(A \cdot A^t)^{200}$.
- b) Calcúlese $(A \cdot A^t 3I)^{-1}$.

Nota: A^t denota a la traspuesta de la matriz A. I es la matriz identidad de orden 3.

Ejercicio 2. (Calificación máxima: 2 puntos)

Sea S la región del plano definida por

$$y \ge 2x - 4$$
; $y \le x - 1$; $2y \ge x$; $x \ge 0$; $y \ge 0$.

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = x 3y en S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Ejercicio 3. (Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por

$$f(x) = \frac{\lambda x}{4 + x^2}$$

- a) Calcúlese el valor del parámetro real λ para que la recta tangente a la gráfica de f en x=-1 sea paralela a la recta y=2x-3.
- b) Calcúlese $\int_0^2 f(x) \, dx$ para $\lambda = 1$.

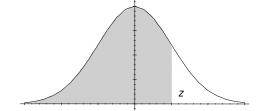
Ejercicio 4. (Calificación máxima: 2 puntos)

Al 80% de los trabajadores en educación (E) que se jubilan sus compañeros les hacen una fiesta de despedida (FD), también al 60% de los trabajadores de justicia (J) y al 30% de los de sanidad (S). En el último año se jubilaron el mismo número de trabajadores en educación que en sanidad, y el doble en educación que en justicia.

- a) Calcúlese la probabilidad de que a un trabajador de estos sectores, que se jubiló, le hicieran una fiesta.
- b) Sabemos que a un trabajador jubilado elegido al azar de entre estos sectores, no le hicieron fiesta. Calcúlese la probabilidad de que fuera de sanidad.

Ejercicio 5. (Calificación máxima: 2 puntos)

El mínimo tamaño muestral necesario para estimar la media de una determinada característica de una población que puede aproximarse por una variable aleatoria con distribución normal de desviación típica σ , con un error máximo de 3,290 y un nivel de confianza del 90 %, supera en 7500 unidades al que se necesitaría si el nivel de confianza fuera del 95 % y el error máximo fuera de 7,840.


Exprésense los tamaños muestrales en función de la desviación típica σ y calcúlense la desviación típica de la población y los tamaños muestrales respectivos.

Nota: Utilícese $z_{0,05} = 1,645$.

Matemáticas Aplicadas a las Ciencias Sociales

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
-	,,,,,	,01	,02	,03	,,,,,	,03	,00	,07	,00	,03
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990