PRUEBA DE ACCESO (EBAU)

UNIVERSIDADES DE BALEARES

<u>JUNIO – 2019</u>

MATEMÁTICAS II

de las dos opciones propuestas. Se valorarán

Tiempo máximo: 1 horas y 30 minutos

Conteste de manera clara y razonada una de las dos opciones propuestas. Se valorarán la corrección y la claridad en el lenguaje (matemático y no matemático) empleado por el alumno. Se valorarán negativamente los errores de cálculo. Puede utilizar calculadora de cualquier tipo, científica, gráfica o programable, pero no se autorizarán las que porten información

OPCIÓN A

- 1°) a) Discutir para qué valores de a el sistema (a+2)x + (a-1)y z = 1 es ax y + z = -1 es 11x + ay z = a
- b) Resolvedlo en el caso de a = 0.
- 2°) Las funciones $f(x) = x^4 + ax^2 + bx$ y $g(x) = x cx^2$ pasan por el punto (1,0). Determine los coeficientes a, b y c para que tengan la misma recta tangente en este punto y calcularla.
- 3°) Determine la posición relativa del plano $\pi \equiv x + y + z = 1$ y la recta de ecuación continua $r \equiv x 1 = y 1 = \frac{z-1}{-2}$. Calcule la proyección ortogonal de la recta sobre el plano.
- 4°) Las alturas X de los estudiantes de 18 años del instituto de Palma se distribuyen según una distribución normal de media $\mu=1,78~m$ y desviación típica $\sigma=0,65~m$. Se pide:
- a) Porcentaje de estudiantes de 18 años del instituto de Palma que miden más de 1,90 metros.
- b) Cogemos una muestra de 100 estudiantes de 18 años del instituto de Palma y queremos seleccionar a los 30 más altos. ¿Cuál es la altura mínima que deben tener los estudiantes de 18 años del instituto de Palma para ser seleccionados?

OPCIÓN B

- 1°) Se considera la matriz $A = \begin{pmatrix} x & y \\ 0 & y \end{pmatrix}$ y los vectores $\vec{b} = \begin{pmatrix} 2 \\ \frac{3}{2} \end{pmatrix}$, $\vec{c} = \begin{pmatrix} y \\ 2y \end{pmatrix}$, $\vec{d} = \begin{pmatrix} 6 2y \\ -2 \end{pmatrix}$. Calcular x e y para que se verifique: $\vec{b} A \cdot \vec{c} = A \cdot \vec{d}$.
- 2°) Consideremos la región delimitada por la función $f(x) = x^2 x^4$ y el eje de abscisas OX. Haga un esbozo de la región dada y calcule su área.
- 3°) Consideremos la recta $r \equiv \frac{x-1}{2} = y+1 = -z+1$ y el plano $\pi \equiv x-y=0$. Calcule el área del triángulo formado por el punto de corte entre la recta y el plano, el punto A(1,-1,1) de la recta y la proyección ortogonal del punto A sobre el plano.
- 4°) En una comunidad de 500 estudiantes de 2° de bachillerato, 200 estudian la opción científico-tecnológica. Hay 150 que practican fútbol y 100 que practican baloncesto (entendemos que no hay ninguno que practique fútbol y baloncesto a la vez). De los que practican baloncesto, 70 estudian la opción científico-tecnológica, y hay 150 estudiantes que no practican deporte, ni hacen la opción científico-tecnológica. Se pide:
- a) Probabilidad que un estudiante estudie la opción científico-tecnológica y no practique deporte.
- b) Sabiendo que un estudiante practica fútbol, ¿cuál es la probabilidad de que estudie la opción científico-tecnológica?
- c) ¿Son independientes los eventos "practicar fútbol" y "estudiar la opción científicotecnológica". Razonar la respuesta.
