

Prueba de Acceso a la Universidad de Extremadura Curso 2014-15

Asignatura: QUÍMICA

Tiempo máximo de la prueba: 1h.30 min.

OPCIÓN A

1) a) Escribir las estructuras de Lewis correspondientes a las especies químicas: fluorometano (CH₃F), dióxido de carbono (CO₂), tricloruro de boro (BCl₃) y amoniaco (NH₃);

b) Indicar, razonadamente, si alguna de ellas presenta polaridad.

Números atómicos Z: H=1; B=5; C=6; N=7; O=8; F=9; Cl=17.

Puntuación máxima por apartado: 1 punto

2) Calcular: a) la cantidad (en gramos) de NaOH necesaria para obtener 250 mL de disolución de pH=10.

b) El volumen (en mL) de HCl al 36% en masa y densidad 1,20 g·mL⁻¹ necesario para neutralizar 120 mL de la disolución del apartado anterior.

Masas atómicas (u): H=1,0; O=16,0, Na=23,0; Cl=35,5.

Puntuación máxima por apartado: 1 punto

3) A partir de los datos siguientes:

Especie	∆H _f (kJ·mol ⁻¹)	S ⁰ (J·mol ⁻¹ ·K ⁻¹)
CO _{2(g)}	-393,5	213,6
CO _(g)	-110,5	197,9
O _{2(g)}	•	205.0

a) Determinar la energía libre de Gibbs, a 25 °C, para la reacción de combustión de un mol de monóxido de carbono ($CO_{(g)} + 1/2 O_{2(g)} \rightarrow CO_{2(g)}$). b) Indicar, razonadamente, si el proceso es espontáneo.

Puntuación máxima por apartado: a) 1,5 puntos; b) 0,5 puntos

- 4) A 425 °C, el equilibrio: $I_{2(g)} + H_{2(g)} = 2 HI_{(g)}$ tiene una $K_c = 54.8$.
 - a) Deducir razonadamente en qué sentido se desplazará la reacción si, en un recipiente de 10,00 L, se introducen 12,69 g de I₂, 0,100 g de H₂ y 25,58 g de IH y se calientan a 425 °C;
 - b) Calcular las concentraciones de las tres especies en el equilibrio;
 - c) Calcular el valor de K_p.

Masas atómicas (u): H=1,0; I=126,9. R=0,082 atm·L· K^{-1} ·mo I^{-1} .

Puntuación máxima por apartado: a) y b) 0,75 puntos; c) 0,5 puntos

- 5) a) Indicar los números de oxidación del nitrógeno en las siguientes especies; N2; NO; NO2; N2O; N2O4.
 - b) Escribir la semirreacción de reducción del ácido nítrico (HNO₃) a óxido nítrico (NO), y proponer la expresión del peso equivalente del ácido nítrico en esta semirreacción en función de la masa molar.

Puntuación máxima por apartado: 1 punto

Prueba de Acceso a la Universidad de Extremadura Curso 2014-15

Asignatura: QUÍMICA Tiempo máximo de la prueba: 1h.30 min.

OPCIÓN B

- Indicar, razonadamente, si son ciertas o falsas las siguientes afirmaciones. Las que no sean ciertas se deben escribir correctamente: a) Hay sales que disueltas en agua dan lugar a disoluciones de pH ácido;
 - b) Hay sales que disueltas en agua dan lugar a disoluciones de pH básico; c) La mezcla en equilibrio de igual número de moles de un ácido débil y su base conjugada siempre da lugar a una disolución de pH neutro;
 - d) Una disolución de HCl 10⁻² M tiene un pOH=10.

Puntuación máxima por apartado: 0,5 puntos

2) Calcular: a) la masa de un átomo de cloro; b) los moles de átomos de oxígeno contenidos en 3,25 mol de oxígeno molecular; c) los átomos de plata contenidos en 5 g de este metal; d) los moles de un gas que ocupa 2,24 L, medidos en condiciones normales.

Masas atómicas (u): O=16,0, CI=35,5; Ag=107,8. $N_A = 6,022 \cdot 10^{23}$.

Puntuación máxima por apartado: 0,5 puntos

3) Una mezcla de los óxidos CuO y Cu₂O, con una masa total de 1 g, se reduce completamente a 0,839 g de Cu. Calcular el porcentaje de CuO en la mezcla.

Masas atómicas (u): O=16,0, Cu=63,5.

Puntuación máxima: 2 puntos

4) Se mezclan 50 mL de una disolución que contiene 0,331 g de nitrato de plomo (II) (Pb(NO₃)₂) con 50 mL de una disolución conteniendo 0,332 g de yoduro potásico (KI). Calcular: a) Si se formará precipitado de yoduro de plomo (II) (PbI₂); b) Solubilidad (en g·L⁻¹), del yoduro de plomo (II). Considerar aditivos los volúmenes.
Masas atómicas (u): N=14,0; O=16,0; K=39,0; I=126,9. Pb=207,0. K_{PS}(PbI₂) = 10⁻⁸.

Puntuación máxima por apartado: 1 punto

- 5) a) Dada la fórmula molecular C₄H₈O₂, ¿a qué compuesto o compuestos de los indicados a continuación corresponde?. 1) Ácido butanóico; 2) Butanodial; 3) Butano-1,4-diol; 4) Ácido 2-metil propanoico.
 - b) Escribir las fórmulas semidesarrolladas de los cuatro compuestos anteriores.

Puntuación máxima por apartado: 1 punto